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Abstract In this paper we have characterized the conical intersection, an important
topological feature of potential energy surfaces in a in cis—trans isomerization, in terms
of the nonclassicality and quantum entanglement which are shown to be controlled by
the torsion angle as a molecular parameter. In this context we have provided a quanti-
tative measure of entanglement in terms of Wigner function matrix and compared with
other standard measures, namely, von Neumann entropy and partial transpose of joint
density matrix. It is shown that the entanglement in the ground state maximizes as
the angle reaches the conical intersection point. The highly nonclassical nature of the
conical intersection is shown in terms of the significant amount of squeezing for long
ranges of the torsion angle and vibronic coupling. The region of high entanglement
at and around the conical intersection is connected to the spectroscopically ‘dark’
time window recently detected in ultrafast transient optical spectroscopy experiments
in molecular systems with torsional motion which is associated with the presence of
conical intersection.

Keywords Conical intersection - Entanglement - Nonclassicality - Cis—trans
isomerization

1 Introduction

Investigation and control of the quantum degrees of freedom of a molecule using
specially designed femtosecond laser pulses is an area of active research. Quantum
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entanglement and nonclassicality are well studied not only for quantum optical systems
but also for molecular and quantum dot material systems. For example, the quantum
state reconstruction of a molecule is studied experimentally and from time-dependent
spectroscopic analysis of the quantum interference structure due to vibrational motion
of a molecule can be completely characterized [1,2]. Generally this characteriza-
tion involves phase space quasiprobability distributions. Among other measures of
nonclassicality and entanglement, von Neumann entropy is utilized to calculate the
entanglement of electronic and vibrational degrees of freedom from the joint den-
sity matrix. Again the positive partial transpose is applied to composite subsystems
which gives a necessary and sufficient condition for separability and entanglement.
Among various quasiprobability distributions, Wigner function [3,4] is the most suit-
able which is extensively used in quantum optics [5] and to exhibit the nonclassicality
[6,7] of the electromagnetic field [§—13] and quantum entanglement of the material
system [14-17]. Emission tomography was used in the early stages of the quantum
state reconstruction of light [8] as well as matter [1,18]. Extensive theoretical and
experimental studies were performed on the entanglement of electronic and motional
degrees of freedom in trapped atoms and ions [19,20] using the Wigner function
matrix concept [21,22]. On the other hand the recent report on the realization of the
quantum ground state of a macroscopic mechanical resonator mode and complete
quantum control of the mechanical system shows the enormous advance in quantum
state realization even for a macroscopic system [23].

Now the effect of quantum entanglement among various degrees of freedom on
molecular properties [24,25] is not fully understood due to the added complexity of
coupling between the vibrational and electronic motion in comparison to the entan-
glement between two spatially separated objects. So it is important to study the
connection between the entanglement of the system and the way it controls experimen-
tally detectable molecular properties e.g, the spectra and chemical reaction kinetics, in
particular. Here we present a study of the nonclassicality and quantum entanglement
in the vibrational mode of a molecular system coupled with two electronic states and
having also a rotational degree of freedom. This model system exhibits a conical inter-
section (CI) [26-28] of the two-dimensional adiabatic potential energy surfaces and is
well-studied in the context of nonadiabatic ultrafast dynamics of photo-isomerization
and internal conversion explained in terms of molecular wavepacket motion [29-32].
The special role of the conical intersection in governing the dynamics of a molecular
process particularly for molecules with atomicity greater than 2 is well established
[33-35]. In this paper we study the variation of nonclassicality and entanglement over
the potential energy surface by treating the torsional coordinate parametrically and
characterize the conical intersection point in terms of these quantities. In a cis—trans
isomerization reaction the torsion angle can be taken as a parameter if a heavy group is
attached with the double bond to adiabatically decouple the torsional and vibrational
motion. More particularly here it is explored to see how the amount of nonclassicality
and entanglement in the ground state depends on the rate of cis—trans photoisomer-
ization reaction of the molecular system which is actually governed by the shape of
the lower adiabatic potential energy surface [29].

The paper is organized as follows. In Sect. 2 we describe the model system
with the Hamiltonian. Section 3 gives the definition and properties of the Wigner
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function matrix. Results and discussions are in Sect. 4. The paper is concluded in
Sect. 5.

2 A model of conical intersection corresponding to cis—trans
isomerization

We consider two diabatic [24,31,32] electronic states |i) (i = 1,2), one being the
ground electronic state and the other the first excited singlet state, coupled with a
single vibrational mode. Along with this we consider a torsional mode representing
the torsion of the molecule around a double bond e.g. the carbon-carbon double bond
after electronic excitation. The Hamiltonian of the system is constructed as

2 a2

2
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Here Vit (¢) is the torsional potential with ¢ being the torsion angle (coordinate), / is
the reduced moment of inertia of torsion; a', a are creation and annihilation operators,
respectively for the vibrational mode with frequency w and A is the vibronic coupling
constant. The dimensionless normal coordinate of this vibrational mode couples the
two diabatic electronic states in first order. The torsional potentials of the two diabatic
states are taken from the truncation of the Fourier series as

1
Vi) = 5 voll —cos2¢)]
and
1
Vi) =E — Suol1 = cos(29)].

We are interested only in exploring the quantum features of the coupling vibra-
tional mode of the system and the characterization of the conical intersection point
by treating the torsion angle ¢ parametrically to traverse the lower adiabatic sur-
face. So we choose this simple two-dimensional picture to get an understanding of
the connection between the nonclassical features of the states, the vibronic coupling
and the role of the topological features like conical intersection of the potential sur-
faces. In this system the two adiabatic potential energy surfaces exhibit a conical
intersection (CI) at (X = 0, ¢ = 48.2°) as shown in Fig. 1. For all other values of
X and ¢ the degeneracy of PESs is lifted. The dimension of the conical intersec-
tion region is zero for the two-dimensional surface [24,25,34] which can be easily
visualized and also can be extended easily by including other important degrees of
freedom.
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Fig. 1 The adiabatic PESs of

the molecular system plotted as 6.0
a function of the interchain 9
dimensionless normal o
coordinate X and torsion angle é
¢. A conical intersection is 2
present at (X = 0, ¢ = 48.2°) = 0r
S
S
) 45 3
(degrees) 0, 0
X

The j-th eigenstate of the molecular system is expanded as,
/) ZZC’ li, n) )
i=1n=0

where |i, n) is a direct product state with ‘n” number of quanta in the vibrational mode.
The wavepacket component over the i-th diabatic surface for a given torsion angle is
written as [32]

vl (X) = Zc (X1n), 3)

n=0

where X represents the dimensionless normal mode vibrational coordinate and

=\ 172
(X|n) = (ﬂ—r/‘;’z/n,) Ha (R X) exp (—wX2/2h),

with H, being the Hermite polynomial of order n.

3 Measures of entanglement and nonclassicality
3.1 von Neumann entropy
The entanglement between the electronic and vibrational degrees of freedom of the

composite states of the system concerned can be expressed using the von Neumann
entropy of entanglement [7,36] as

EyN = —Trel (et 102, per) Z Vi 10g, V. )

Here p,; is the reduced density operator for the electronic degree of freedom (with two-
dimensional state space) obtained by taking partial trace over the vibrational degree
of freedom of the total density operator g i.e. p,; = Tryiplo]. yx are the eigenvalues
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of p;. The total density operator o for the j-th eigenstate of the system is constructed
from Eq. (2).

Now the von Neumann entropy [37] for the system is defined as S =
—Trer (per log per). For unentangled states the entropy is zero and so is Eyn. On
the other hand, the maximally entangled state with state space of dimensionality D
has the maximum entropy log D [37]. So for the electronic degree of freedom with two
electronic states, the maximum entropy will be log 2 and the maximum entanglement
will be Eyn = 1.

3.2 Positive partial transpose

The positive partial transpose (PPT) [38—40] is a necessary condition for a given
joint density matrix of two systems to be separable. It is also known as the
Peres—Horodecki criterion. The criterion states that if the joint density matrix o
is separable then its partial transpose o' has non-negative eigenvalues. So if o'T
has negative eigenvalues, the corresponding state is nonseparable or entangled. The
nonpositivity of the partial transpose is a necessary and sufficient condition of non-
separability and entanglement of a composite state in two and three dimensions.
For higher dimensions, if the eigenvalues are non-negative then the test is incon-
clusive.

Now the entanglement Enpr between the electronic and vibrational degrees of
freedom in the molecular system is defined as [40]

Expr=-2> v (&)

where y, are the negative eigenvalues of the partial transpose of the joint density
matrix o with the partial transpose being taken with respect to the vibrational degree
of freedom. The value Expr = 1 corresponds to a maximally entangled state and for
an unentangled state Expt = O.

3.3 Wigner function matrix

Wigner function is a phase space quasiprobability distribution [3,4] that gives the
complete information about the motional state of the system equivalent to the infor-
mation contained in the corresponding density operator. Wigner function matrix [21]
is the extended form of Wigner function to describe the composite system includ-
ing the electronic degrees of freedom. It is useful for the complete description of the
entangled electronic and vibrational motion [21,22] of the molecular system stud-
ied. By appropriate measuring techniques [1,2,18-20] the Wigner function can be
an index of quantum interference and one can realize the quantum state of a given
system.

The Wigner function matrix for the superposed states of the molecular system can
be written as [22]
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Wij(B) =TrleA;is(B —a)l. (6)
Here o is the total density operator describing the electronic and vibrational degrees
of freedom. A j; is the electronic flip operator given by A ;; = |j)(i| that gives rise to

transition from state |i) to state | j). S represents the complex phase space amplitude
of the vibrational motion defined as 8 = X + i P with X being the dimensionless
normal vibrational coordinate and P its conjugate momentum. 6 (8 —a) is the operator-
valued delta function [3] defined as the Fourier transform of the displacement operator
D(§) = exp(§a’ — £*a) as,

1
5(8 — a) ;ﬁ/ﬁ%D@MWwﬁ—ﬂ%>

2 ata mt
;D(ﬁ)(—l) D'(B). (N

The Wigner function matrix is Hermitian. The diagonal matrix elements W;; (8) give
the Wigner functions corresponding to the diagonal density operator in the electronic
state space and gives the occupation probability of the electronic state |i). The Wigner
function corresponding to the vibrational degree of freedom can be obtained from
the Wigner function matrix by simply taking the trace over the electronic degree of
freedom [21] and is given as

W(B) =D Wii(B). ®)

The off-diagonal elements W;;(8) give the electronic coherence and information
about the entanglement between the electronic and vibrational motions. The negativity
of the Wigner function reveals the nonclassicality of the vibrational motion and can also
give an idea about the entanglement in the system [6,7]. We define the nonclassicality
of a particular eigenstate of the system by a parameter § defined as the volume of
the negative portion of the Wigner function [6] in the phase space of the vibrational
motion and it is given by

3=//(IW(X, P)| — W(X, P))dXdP. )
XJP

For a coherent state, the quantum state considered to be the closest one to a classical
state, the parameter § = 0. But we emphasize here that in specific cases § can be zero or
negligible for highly nonclassical states also. For example, for the highly nonclassical
Schrodinger cat states considered by Vogel et al. [21], the diagonal Wigner function
matrix elements has no negative portion; hence the Wigner function, determined as
the trace of the Wigner function matrix, also will be non-negative over the phase
space and the nonclassicality parameter will be zero. In this type of situation the
nonclassicality is concealed but the quantum entanglement between the electronic
and vibrational degrees of freedom present in the system is a strong indicator of
the inherent nonclassical nature of the quantum state. The Wigner function matrix
elements W;;(B) are useful to detect such kind of entanglement with the fact that the
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matrix elements are different for different electronic indices 7, j for an entangled state
[21,41]. Keeping this in mind, we define the entanglement parameter Ev for the states
of the molecular system as

Ew = /X /P (Wial — /Wi Wa2)d XdP. (10)

There is a general connection between the nonclassicality and entanglement. A non-
classical state can lead to entanglement in the output states generated by mixing this
state with the vacuum state in a suitable experimental setup [10,11] which is not
possible with a classical state.

4 Results and discussion

We solve the stationary Schrodinger equation in the direct product basis constructed
with the two diabatic electronic states and vibrational states corresponding to the
coupling mode. The values of the parameters of the Hamiltonian in Eq. (1) are taken
from the work of Seidner et al. [31]. We take vg = 4.5eV and E = 5.0eV in the
expressions of torsional potentials. The value of the reduced moment of inertia, /
is taken in such a way that corresponds to an energy value of 0.01eV (‘1/I’ has
energy units). The frequency of the coupling vibrational mode is @ = 0.17 ev and the
vibronic coupling constant A is varied in the range between w and 2w. Consequently
the torsional motion becomes slowly varying compared to the vibrational motion to
treat it parametrically. We determine the energy values and corresponding eigenvectors
treating the torsion angle ¢ parametrically. The wavepacket component wl:’ (X) (see
Eq. 3) is plotted at different vibronic coupling strengths A over the lower diabatic
surface (i = 1) for the lowest energy eigenstate (j = 1) with ¢ = 45° in Fig. 2. As the
torsion angle ¢ approaches the conical intersection (CI) point value ¢ = 48.2°, the
initial Gaussian wavepacket starts to split at X = 0. The amount of splitting strongly
depends on the coupling strength A as is evident from Fig. 2. For A = 2.0 (scaled
with respect to w), the splitting is complete at and near the conical intersection. For
A = L.5 the splitting is partial with the single peaked Gaussian becoming double-
peaked but there is no complete separation. Finally for A = 1.0 there is no splitting
of the wavepacket component over the lower diabatic surface for the ground state
of the system. This type of behavior is also obtained from the dynamical studies on
the motion of wavepackets over the potential energy surfaces with conical intersection
[29,30]. The strong vibronic coupling (A = 2.0) expels the wavepacket from the region
of large nonadiabatic coupling at the CI point and the motion is adiabatic. Similarly
for low coupling (A = 1.0), the absence of splitting indicates maximum occupation
probability at and near the CI point and hence the motion is diabatic. This behavior is
explained through the variation of shapes of the lower adiabatic surface along the X
direction, changing from double-well to single-well with decreasing vibronic coupling
strength and is well-studied in the literature [32].

Here we study the Wigner function matrix elements W;; (X, P) for the vibrational
degree of freedom corresponding to the coupling mode for the lowest energy eigenstate
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Fig. 2 The wavepacket ‘I’l( % :
component l/fi/ (¢, X) plotted at ! 0=45° ]
different vibronic coupling .
strengths A over the lower
diabatic surface (i = 1) for the
lowest energy eigenstate (j = 1)
with ¢ = 45°

as a function of the torsion angle ¢ for different values of A. Different Wigner function
matrix elements are plotted over the phase space of the vibrational mode in Fig. 3 for
¢ = 0° with A = 2.0. The plot of Wy corresponds to the vacuum state of vibration
and that of Wy, to the single photon Fock state. The complex off-diagonal element
W1, contains information about the electronic coherence and entanglement with other
degrees of freedom.

The torsion angle ¢ is varied parametrically from 0° to 90° for fixed values of
vibronic coupling A and we study the corresponding variations in the Wigner function
elements for the lowest energy eigenstate. The diagonal element Wi (X, P) cor-
responding to the lower diabatic surface is Gaussian-shaped for low ¢ values but
starts to split with rising ¢. The initiation and extent of splitting depends on A as
in the wavepacket picture. For weak coupling (. = 1.0) there is hardly any split-
ting of the element Wj; over the phase space almost upto the CI point whereas
for A = 2.0 it starts to split at ¢ ~ 40° as in the wavepacket picture. But the
Wigner function matrix element exhibits more interesting features. With the genera-
tion of two separated peaks over the phase space, there appears a strong interference
structure in between. This actually happens for both the diagonal elements Wy
and Wy, as the torsion angle approaches the CI point (¢ = 48.2°) as shown in
Fig. 4. One can see that the two diagonal Wigner function matrix elements corre-
sponding to the two diabatic electronic states has remarkable resemblance with the
Wigner functions of Schrodinger cat states [6,42,43], generated by the superposi-
tion of two coherent states. In the case of ‘cat-states’, increasing separation between
the superposed coherent states results in the splitting of the initial Gaussian-shaped
Wigner function into two lobes with interference structures in between them. In our
case both the torsion angle ¢ and the vibronic coupling A determine the occurrence
of splitting and govern the interference structures. For low A value (say 1.0), the
separation and the interference structures are much less pronounced (not shown in
figures).

The Wigner function for our system can be calculated from the trace of the Wigner
function matrix using W(X, P) = Zi Wi (X, P). We have determined the Wigner
function for the lowest eigenstate as a function of the torsion angle ¢ and A. As
mentioned in the previous section, the volume of the negative portion of the Wigner
function gives a measure of the nonclassicality of the state. We plot the nonclassicality
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Fig. 3 3D plots of the Wigner function matrix elements W11, W, and real and imaginary parts of Wy, in
the phase space of the vibrational motion for ¢ = 0° and A = 2.0 for the lowest energy state. X denotes
the dimensionless normal coordinate of the vibration and P is its conjugate momentum
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Fig. 4 3D plots of the diagonal Wigner function matrix elements over the phase space of the vibrational
motion for the lowest energy state with A = 2.0 and ¢ = 48.2°, the conical intersection point. X denotes
the dimensionless normal coordinate of the vibration and P is its conjugate momentum
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Fig. 5 The nonclassicality
indicator § as a function of the A
torsion angle ¢ for three
different values of the vibronic
coupling constant A for the
lowest energy state

0.3 =

0.1

0 30 60 T 90
torsion angle (in degrees)

indicator, 8, defined in Eq. (9), against ¢ in Fig. 5 for different values of A. One can
see from the plot that § remains close to zero for ¢ values up to 30° for the range
of coupling considered here. In case of strong coupling with A = 2.0 the § value
increases sharply for ¢ values greater than 30°. It becomes maximum around ¢ = 40°
and then decreases almost abruptly and reaches a minimum at the conical intersection
point. Beyond the CI point there is a repetition of the features. Similar thing happens
for other couplings. We can see that the amount of nonclassicality of the state strongly
depends on the coupling strength A with 6 being very small for A = 1.0 over the entire
range of ¢ studied. But whatever be the value of A, the nonclassicality indicator §
becomes minimum at the conical intersection point.

From the plots of the diagonal Wigner function matrix elements at the conical
intersection in Fig. 4, one can easily see that in this region the interference structures
rapidly grow with more pronounced oscillations as the torsion angle reaches the CI
point value. These interference structures in the Wigner function matrix occupy a
significant negative portion in the phase space and maximize at the CI point. So what
is the reason behind the drastic lowering of the nonclassicality indicator § for the
ground state of the system at and near the CI point? With close inspection of the plots
of W11 and Wy, in Fig. 4, we can see that their interference structures at the CI point are
almost equal in magnitude but of opposite sign over the same phase space region. So
when the Wigner function is calculated as the trace over the Wigner function matrix,
the interferences of the diagonal Wigner function elements cancel out each other at
and near the CI point. That is why the negative volume of the Wigner function and
consequently the nonclassicality indicator § shows a sharp dip at and near the CI point
with the value of § being minimum at the CI point concealing the highly nonclassical
feature of the state. The similarity of the lowest eigenstate of our system to the ‘cat
state’ in terms of the diagonal Wigner function elements is already mentioned. The
opposite sign of the interference structures for Wi; and W»; extends this link further
to even and odd ‘cat states’ [44]. Hence the lowest eigenstate of the system at the
conical intersection point can be described as the superposition of even and odd cat
states coupled to the ground and excited diabatic electronic states, respectively and
can be written as
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Fig. 6 The entanglement parameters a Eyyn and b Expr as a function of the torsion angle ¢ for two
different values of the vibronic coupling constant A for the lowest energy state

1
V2

Now to get the actual nonclassical behavior of the lowest eigenstate of the system
at and near the conical intersection, we study the amount of entanglement between the
electronic and vibrational degrees of freedom for the state. In this context, we have
calculated the three different measures of entanglement discussed in the previous
section. All the measures are determined for the ground state of the system as a
function of the torsion angle parameter ¢ and the vibronic coupling A. The variations
of Eyn and Enpt as a function of ¢ for two different values of A are shown in Fig.
6a, b, respectively. They show almost similar variation trend over the range of ¢
considered for a given A. With increasing ¢, at first both Eyn and EnpT remain almost
constant. Then from ¢ ~ 30° there is a sharp rise in both the curves upto the CI
point i.e. ¢ = 48.2°. At the CI point both Eyvn and Enpr become almost equal to
their maximum possible value (= 1.0) indicating that the ground state of the system
becomes a maximally entangled state at the conical intersection point independent of
the coupling strength A. For all other values of ¢, the two entanglement measures are
higher for higher A. Hence the hidden nonclassical nature of the state at and near the
CI point is revealed through the entanglement measures.

Now we introduce another measure of the electron-vibration entanglement, semi-
quantitative in nature though, in terms of the Wigner function matrix. An indication
of the presence of entanglement in terms of the Wigner function matrix is the fact that
for an entangled state the different matrix elements W;; will be different for different
electronic indices i, j. So we define an entanglement parameter Evw that quantifies the
entanglement as defined in Eq. (10). We plot the quantity Ew in Fig. 7 as a function of
the torsion angle ¢ for two different values of A for the ground state. From the figure it
is seen that the entanglement parameter Evy increases with increasing ¢ and its value is
higher for higher coupling strength A. But most importantly Ew becomes maximum at
the CI point and the actual nonclassical nature of the system gets uncovered. One can

W) = —= (D)) + ] —a) + 2)(ja) — | —a))), fori = 0. (1)
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Fig. 7 The entanglement 0.4
parameter Ey; as a function of A
the torsion angle ¢ for tyvo . .t 1.0
different values of the vibronic E " b
. w £ \ =—=20
coupling constant A for the J 1
lowest energy state | \
02} ! \
] \
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/ .
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also see from the figure that the variation of Ew with ¢ shows remarkable semiquan-
titative similarity with the other two measures of the entanglement (see Fig. 6). This
feature can be useful in the context of detection and measurement of entanglement
in systems with dimensionality greater than two or three particularly when one must
consider the vibrational manifold. Now with the coupled electronic and vibrational
degrees of freedom of our system, we can always construct a basis with two pairs of
electronic and vibrational states (|n) = |0), 1)) like the problem of two interacting
qubits where this choice of basis is the natural one. One point to be noted though is
that including only the lowest two vibrational states in the basis is totally justified
only when the vibronic coupling is not very strong. But if the quantitative estimation
of the entanglement among several degrees of freedom need not be highly accurate
without the loss of the general physics then the calculation can be done for strong
enough coupling to get an idea about the entanglement variation as a function of rel-
evant system parameters. Then, more importantly, the entanglement variation trend
can be matched with the variation of other important and experimentally realizable
quantities. This understanding can generate highly interesting informations about the
role of the entanglement among several degrees of freedom in governing the properties
of the molecular system like current or spectra.

Next we study the variances AX?(= (X?)—(X)?)and AP (= (P?)—(P)?) as well
as the uncertainty product A X A P corresponding to the vibrational mode for the lowest
energy state. In Fig. 8 we show the square root of the variances and the uncertainty
product as a function of ¢ for two different coupling strengths. From the plots one can
see that the uncertainty product A X A P starts to deviate from the minimum uncertainty
value of 0.5 as the angle ¢ approaches the conical intersection point. The point at
which this deviation commences and also the amount of the deviation depends on
the vibronic coupling strength A. For A = 1.0 the deviation starts from ¢ ~ 40°
whereas for A = 2.0 it starts from ¢ ~ 30°. The deviation of the product AXAP
from the value 0.5 becomes maximum at the CI point with its value being higher for
higher A. Also AX and AP individually become maximum at the CI point which is
the point of maximum entanglement as already established for the system concerned.
This observation tallies with the study on atom-phonon entanglement [45] where it
is established that the uncertainty product for the single particle measurement of a
particle’s coordinate and momentum is related to the entanglement parameter. These
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Fig.8 The square root of the variances, AX and A P corresponding to the dimensionless normal coordinate
X and its conjugate momentum P, respectively for the vibrational mode as a function of the torsion angle
¢ for two different values of the vibronic coupling constant A for the lowest energy state. The uncertainty
product AX AP is shown also

uncertainties, defined individually for the atom and the photon systems, grow with
increasing entanglement. The minimum uncertainty product value corresponds to an
unentangled state. Another interesting feature is the fact that the variance associated
with the P-coordinate, A P2 is less than 0.5 for the case of A = 1.0 in the range of ¢
considered and its maximum is at the CI point with the value being very close to but
less than 0.5. This is a definite case of squeezing in the P-coordinate. For A = 2.0 the
squeezing is present upto ¢ =~ 40°. Above this angle and upto ¢ ~ 55° the squeezing
vanishes with the value of A P? being maximum again at the CI point.

The effect of the variations of AX and A P with the variation of the torsion angle
¢ on the corresponding Wigner function W (X, P) is also very interesting. We show
this in the contour plots of W (X, P) in the phase space for two different values of ¢
for the lowest energy state for two different vibronic couplings in Fig. 9. From Fig.
9a one can see the almost circular feature of the phase space Wigner function for the
lower coupling strength. On the other hand for stronger coupling A = 2.0, the Wigner
function becomes elliptic (see Fig. 9b). At the conical intersection point, the splitting
of the Wigner function over the phase space is just complete for A = 1.0 as shown in
Fig. 9c. For A = 2.0, the splitting is totally complete with the separation between the
split centers being much higher compared to the A = 1.0 case as is evident from Fig.
9d. This feature corresponds to the spreading of the wavepacket over the lower diabatic
surface for high A value. The interference structures, although much attenuated, can
be seen at the CI point for A = 2.0 but not in the case of A = 1.0. The near cancellation
of the interference structures of the Wigner function in phase space at and near the CI
point is already discussed.

Now all these variations in nonclassicality and entanglement calculated for the
lowest energy state with changing torsion angle can be explained with the variation of
the wavefunction coefficients in Eq. (2). For low values of the torsion angle ¢ starting
from ¢ = 0°, the coefficient corresponding to the vacuum state of the vibrational mode
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Fig. 9 Contour plots of the Wigner function W (X, P) over the phase space of the vibrational motion for
the lowest energy state with torsion angle ¢ = 0° and ¢ = 48.2°. Two different vibronic coupling strengths
are . = 1.0 (a, ¢) and A = 2.0 (b, d). X denotes the dimensionless normal coordinate of the vibration and
P is its conjugate momentum

is important only i.e. C 1] (0,0 for j = T is almost equal to 1.0. But as ¢ approaches the
conical intersection point (¢ = 48.2°), coefficients with higher vibrational quantum
number starts to become significant. This tendency is enhanced for stronger vibronic
coupling A. The mixing of these higher vibrational levels with the vacuum as a function
of the torsion angle and the vibronic coupling enhances the nonclassical features and
generates entanglement and squeezing in the composite states of the molecular system.
The amount of entanglement and variances of the vibrational coordinate X and its
conjugate momentum P measured for the lowest eigenstate, maximize at the conical
intersection point.

Experimental detection of conical intersection in a molecule is very challenging
as the energy gap of the molecule undergoes a drastic change over an ultrashort
timescale, requiring a combination of extremely high temporal resolution and broad
spectral tunability. Recent ultrafast transient optical spectroscopic experiments on
molecular systems with cis—trans isomerization generated by torsional motion [46,47]
detect interesting time-dependent optical signals like differential transmission sig-
nals. The theoretical model system used by us closely resembles these real molecular
systems. The signals initially remain positive after the photoexcitation due to fluo-
rescence/stimulated emission. The signals red shift rapidly and vanishes within few
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hundred femtosecond depending on the nature of the system studied. After a very short
passage through this spectroscopically ‘dark’ time window, there appears a photo-
induced absorption signal that blue shifts rapidly to a steady value indicating the
appearance of the molecule in the ground state and subsequent relaxation. For our
case, the most important portion in the time-dependent ultrafast spectral analysis is
the spectroscopically ‘dark’ time window as it is associated with the passage through
a conical intersection [47]. As we characterize the conical intersection in terms of
nonclassicality and quantum entanglement of the lowest energy state of the model
system, we can say that the region of vanishing optical transition in these systems is
connected with maximum entanglement.

5 Conclusion

We have investigated the effect of nonclassicality and quantum entanglement in a cis—
trans isomerization reaction by treating the torsional coordinate parametrically for the
understanding of the molecular system in presence of a conical intersection of the
adiabatic potential energy surfaces. We have introduced a measure of entanglement
in terms of the Wigner function matrices in the phase space of a vibrational mode
which couples the two diabatic electronic states of the system and compared with
other standard measures, namely, von Neumann entropy and partial transpose of joint
density matrix. An interesting variation of nonclassicality and entanglement is found
for the ground state as a function of the torsion angle and we have identified the
conical intersection point of the two-dimensional adiabatic potential surfaces as the
point of maximum quantum entanglement. The dip in the nonclassicality parameter,
calculated as the volume of the negative portion of the Wigner function, at the CI
point is explained as the cancellation of interference structures in the corresponding
diagonal Wigner function matrix elements that conceals the highly nonclassical nature
of the state. It is shown that the extent of nonclassical nature of the state as well as the
entanglement strongly depends on the strength of the nonadiabatic vibronic coupling.
This Wigner function measure of entanglement between electronic and vibrational
degrees of freedom can be useful for systems with number of electronic states greater
than two with a vibrational manifold where other methods are not directly applicable.
We have calculated the variances of the dimensionless normal coordinate and its
conjugate momentum for the vibrational mode of the system and found interesting
variations as a function of the torsion angle. Both the variances reach the maximum
at the CI point. The uncertainty product also shows maximum deviation from the
minimum uncertainty product value at the CI point depending on the vibronic coupling
strength. There is also a significant amount of vibronic coupling dependent squeezing
which is reflected in the contour plots of the Wigner function in phase space.
Experimental determination of conical intersection in molecular system is highly
challenging. Recent ultrafast time-dependent optical spectroscopy experiments asso-
ciate the spectroscopically ‘dark’ time window with the passage of the system through
the conical intersection region. Here we characterize the conical intersection point as
the point of maximum entanglement and connect the high entanglement region with
vanishing spectral signal. Finally, our results suggest that one can control the entan-
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glement between the vibrational and electronic subsystems by the manipulation of the
molecular parameters such as torsion angle which can be prepared externally.
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